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Cognitive task
Functional near infrared spectroscopy (fNIRS) is a promisingmethod formonitoring cerebral hemodynamicswith a
wide range of clinical applications. fNIRS signals are contaminated with systemic physiological interferences from
both the brain and superficial tissues, resulting in a poor estimation of the task related neuronal activation. In
this study, we use the anatomical resolution of functional magnetic resonance imaging (fMRI) to extract scalp
and brain vascular signals separately and construct an optically weighted spatial average of the fMRI blood oxygen
level-dependent (BOLD) signal for characterizing the scalp signal contribution to fNIRS measurements. We
introduce an extended superficial signal regression (ESSR) method for canceling physiology-based systemic
interference where the effects of cerebral and superficial systemic interference are treated separately. We apply
and validate our method on the optically weighted BOLD signals, which are obtained by projecting the fMRI
image onto optical measurement space by use of the optical forward problem. The performance of ESSR method
in removing physiological artifacts is compared to i) a global signal regression (GSR) method and ii) a superficial
signal regression (SSR) method. The retrieved signals from each method are compared with the neural signals
that represent the ‘ground truth’ brain activation cleaned from cerebral systemic fluctuations.We report significant
improvements in the recovery of task inducedneural activationwith the ESSRmethodwhen compared to the other
two methods as reflected in the Pearson R2 coefficient and mean square error (MSE) metrics (two tailed
paired t-tests, p b 0.05). The signal quality is enhanced most when ESSR method is applied with higher
spatial localization, lower inter-trial variability, a clear canonical waveform and higher contrast-to-noise
(CNR) improvement (60%). Our findings suggest that, during a cognitive task i) superficial scalp signal
contribution to fNIRS signals varies significantly among different regions on the forehead and ii) using an
average scalp measurement together with a local measure of superficial hemodynamics better accounts
for the systemic interference inherent in the brain as well as superficial scalp tissue. We conclude that
maximizing the overlap between the optical pathlength of superficial and deeper penetration measurements
is of crucial importance for accurate recovery of the evoked hemodynamic response in fNIRS recordings.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Functional near infrared spectroscopy (fNIRS) is a non-invasive
imaging technique that utilizes near-infrared light for monitoring
hemodynamic changes associated with evoked brain activity
(Franceschini and Boas, 2004; Gibson et al., 2005; Obrig and Villringer,
2003). Over the past 15 years, fNIRS has become a complementary and
alternative technique to functional magnetic resonance imaging (fMRI)
with a high potential of use for clinical studies, cognitive, behavioral
and neuroscience research (Boas and Dale, 2005; Lloyd-Fox et al., 2010;
gineering, Bogazici University,
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May et al., 2011). The advantages of fNIRS for studying brain activation
include cost efficiency, possibility of use at the bedside, good temporal
resolution, measurement of both oxy- (HbO) and deoxyhemoglobin
(HbR) and use of non-ionizing radiation while the limitations include
modest spatial resolution, lack of absolute quantification in continuous
wave systems and limited penetration depth (Boas et al., 2004;
Villringer and Chance, 1997).

A major concern with fNIRS measurements is the presence of strong
spontaneous fluctuations or physiology-based systemic interferences in
the signal due to cardiac pulsation (around 1 Hz), respiration (around
0.2 to 0.3 Hz) and a variety of spontaneous low frequency oscillations
(LFOs) occurring in the range of 0.01–0.1Hz (Obrig et al., 2000; Payne
et al., 2009; Toronov et al., 2000). LFOs include the spontaneous
oscillations in local vascular tone known as vasomotion (Gustafsson,
1993; Mayhew et al., 1996) and the systemic oscillations in arterial
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blood pressure known as Mayer waves which typically occur at 0.1Hz
(Julien, 2006). Such systemic interferences are present in both the
cerebral and superficial layers (i.e. scalp and skull) of the head and
reduce the accuracy of fNIRS for detecting brain activation (Tian et al.,
2011). The contribution of systemic interference to fNIRS signal is
intensified due to the back reflection geometry of the measurements
(i.e., light is both emitted and received at the scalp surface) which
increases the sensitivity of fNIRSmeasurements to systemic oscillations
occurring in the superficial scalp tissue. Besides, while blood flow
within the brain is stabilized by partial autonomic neural control
(Zhang et al., 2002), blood flow at the scalp tissue is not regulated by
this buffer mechanism and is influenced by systemic physiological
changes to a greater extent. The accurate identification and reliable
elimination of the physiological noise embedded in the fNIRS signals
can improve the signal-to-noise ratio, and/or can enable the same
signal-to-noise ratio with a shorter stimulus period. This goal is
significant, as with decreased acquisition time and increased signal
quality; larger subject populations including young children and
hospitalized patients can be monitored in a shorter time while the
effects of fatigue and adaptation are minimized (Gregg et al., 2010;
Saager et al., 2011).

Several methods have been proposed in the literature to reduce the
systemic interference in fNIRS signals. Low pass filtering is the most
commonapplication, as it can effectively removehigh frequency systemic
oscillations such as heart beat (Franceschini et al., 2003; Jasdzewski
et al., 2003). However, the frequency spectrum of physiology-based
systemic interferences such as respiration, LFOs, and very low frequency
oscillations (VLFOs) significantly overlap with the frequency spectrum of
functional hemodynamic response to brain activation. Frequency-based
removal of these interferences can therefore, distort the temporal
characteristics of the recovered brain activity signal. Other methods
for removing systemic interference include adaptive subtraction of a
cardiac waveform (Gratton and Corballis, 1995), direct subtraction of
a “nonactivated” fNIRS waveform (Franceschini et al., 2003), state space
estimation (Diamond et al., 2006; Kolehmainen et al., 2003; Prince
et al., 2003), wavelet filtering (Jang et al., 2009; Lina et al., 2008, 2010;
Matteau-Pelletier et al., 2009) and principal components analysis
(Franceschini et al., 2006; Zhang et al., 2005). There are also studies
investigating the partial optical path lengths via Monte Carlo simulations
of a layered human headmodel for multi-distancemeasurement set-ups
(Umeyama and Yamada, 2009a,b; Yamada et al., 2009).

An extension to multi-distance measurement methods includes the
use of additional short source-detector (SD) distance (usually less than
1 cm) channels together with typical long SD distance (about 3 cm)
channels which are sensitive to both cerebral and extracerebral tissues.
Short SD distance channel measurements probe superficial, extracerebral
tissue only and aredominated byphysiology-based systemic interference.
To isolate and extract brain specific hemodynamic changes, these short
SD distance channel measurements have been used to remove systemic
interference from the long SD distance channel measurements with the
assumption that a common systemic interference is present in both
channel measurements (Gagnon et al., 2012; Gregg et al., 2010; Saager
and Berger, 2005; Saager et al., 2011). Using multiple SD separations,
an adaptive cancelation method has also been recently proposed and
validated (Zhang et al., 2007a,b; Zhang et al., 2009). In contrast to the
necessity of using short SD distance measurements, superficial hemo-
dynamics can also be estimated by exploiting the photon time-of-
flight distribution in time-domain NIRS at the expense of high-cost
equipment (Aletti et al., 2012; Liebert et al., 2004).

Most of the above-mentionedmethods are based on the assumption
that systemic interference in fNIRS measurements is spatially homoge-
neous across the surface of the scalp. In the present study, we hypo-
thesize that the spontaneous oscillations occurring in the brain tissue
have a spatially global distribution, while the systemic interference
coming from superficial scalp tissue has a more pronounced and
localization-dependent effect on the fNIRS measurements. We treat
both effects separately and propose an extended superficial signal
regression method for canceling physiology-based systemic interference
that is known to obscure the functional response to brain activation. To
test our hypothesis, we apply our method on an optically weighted
spatial average of the fMRI blood oxygen level-dependent (BOLD) signal
which is obtained by combining weighted contributions from each voxel
that coincide with the photon migration path. More specifically, for each
subject and SD pair, once subject specific headmodels are obtained from
structural MRI, photon-migration theory and Monte Carlo simulations
are used to estimate the spatial sensitivity profile of light absorption
changes that occur within different anatomical compartments of the
head (as described in Boas et al., 2002). The overlap of this optical
sensitivity profile with the voxels in each tissue layer (i.e. scalp, skull,
CSF, gray matter and white matter) provides a means of predicting a
spatially weighted BOLD response as a hemodynamic correlate of the
fNIRS signal.

We evaluate the efficacy of removing systemic interference that
occurs both in the brain and at the scalp tissuewith our extended superfi-
cial signal regression (ESSR) method and compare its performance of
physiological noise removal to i) a superficial signal regression (SSR)
method where only superficial scalp interference is removed and ii) a
global signal regression (GSR) methodwhere it is assumed that systemic
interference across all measurements is spatially global as proposed by
most studies (Saager and Berger, 2005; Umeyama and Yamada, 2009b;
Zhang et al., 2007a,b).

Although the data acquisition methods and signals in fNIRS and fMRI
are different, it iswell known that bothmethods are sensitive to the same
hemodynamic changes. A number of studies involving concurrent fNIRS
and fMRI recordings have shown that during functional brain activation,
there is a strong correspondence between the local hemodynamic
responses recorded by the two modalities (Huppert et al., 2006;
Sassaroli et al., 2006; Steinbrink et al., 2006; Strangman et al., 2002;
Toronov et al., 2001). Unlike fNIRS, fMRI has the advantage of probing
brain tissue independent of the overlying scalp and skull layers. Signals
from brain voxels are not mixed with superficial contamination but
still are subject to cerebral systemic fluctuations interfering the brain
functional response. To date, there have been no studies that have
attempted to i) use scalp superficial interference measured by fMRI to
construct a spatially weighted BOLD signal in which the true brain
activity is embedded and ii) test the performance of various interference
cancelation methods on such a hemodynamic correlate of the fNIRS
signal.

Background

Photon migration theory

Near infrared imaging of the brain is based on measuring spatio-
temporal variations in light absorption of the tissues between a source
and a detector. Light is injected at the surface of the scalp, travels
through extracerebral scattering tissues (i.e. scalp, skull and CSF) into
the brain and again is received at the surface of the scalp. The photons
emitted from the light source follow a statistical pattern and cross the
scalp twice before being collected at the detector. In the wavelength
range between 650 and 950nm, the dominant absorbent chromophores
are oxy- (HbO) and deoxyhemoglobin (HbR). Variations in the local con-
centrations of HbO and HbR (denoted as [HbO] and [HbR] respectively)
modulate absorption properties of the brain in a wavelength dependent
manner. The absorption coefficient at a given wavelength (λ) is linearly
related to [HbO] and [HbR] through the equation:

μa λð Þ ¼ εHbO λð Þ HbO½ � þ εHbR λð Þ HbR½ � ð1Þ

where εHbO(λ) and εHbR(λ) denote the wavelength dependent extinction
coefficients of each chromophore (Strangman et al., 2003). A change in
these chromophore concentrations due to brain activation alters the
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absorption coefficient and hence the detected light intensity. According
to the modified Lambert–Beer law (MBLL), a small change in absorption
coefficient is related to the change in measured optical density by the
following formula:

ΔOD t;λð Þ ¼ − log
Φ t;λð Þ
Φ0 λð Þ

� �
¼ Δμa t;λð ÞL λð Þ ð2Þ

where Φ(t,λ) is the average intensity of detected light, Φ0(λ) is the
average intensity of incident light and L(λ) is the effective average
pathlength of light through the tissue (Arridge et al., 1992; Boas et al.,
2004; Cope and Delpy, 1988; Delpy et al., 1988). The effective pathlength
is wavelength dependent but time-invariant when temporal absorption
changeswithin the tissue are small. For a set of discrete volume elements
(i.e., voxels) with each of them experiencing a different absorption
change, the MBLL can be formulated as follows:

ΔOD t;λð Þ ¼
XNvox
j¼1

Δμa; j t;λð ÞLi; j λð Þ ð3Þ

where Li,j(λ) is the effective pathlength of light for the ith measurement
in the jth voxel (Boas et al., 2004). The spatial sensitivity profile of the
photons can be determined with knowledge of the complex distribution
of absorption and scattering properties of the tissues by empirical
methods such as Monte Carlo based modeling (Boas et al., 2002; Wang
and Jacques, 1995; Wang et al., 1995). For each channel, Eq. (3) can be
written in matrix form as

y λð Þ ¼ A λð Þ � δx λð Þ ð4Þ

where y represents the time-series of optical signal changes with
respect to baseline, δx(λ) represents the changes in absorption
coefficient for each voxel, and A is a three-point Green's functionmatrix
which describes the linear transformation from absorption changes of
the underlying media to the measured optical signal change at each
channel. The A matrix can be referred to as the ‘photon absorption
sensitivity profile’ describing the spatial distribution of light traveling
from a particular source to a detector (Arridge, 1999), and usually has
a ‘banana-shape’ profile (a cross section of sensitivity profile is shown
in Fig. 2).

Subjects and study design

fMRI data were collected from 18 healthy subjects during a mental
arithmetic task. 3 subjects were excluded due to excessive motion
artifacts and the results for 15 healthy subjects will be shown here for
analysis (ten males aging 28.4 ± 3 and five females aging 28 ± 3.2).
The study was approved by the Ethics Committee of Bogazici University
and written informed consents were obtained from all subjects after
complete description of the study prior to the first session. During
fMRI measurements, subjects were positioned supine and asked to
refrain from excessive movements and stay motionless. Instructions
about the protocol were given from a screen over the subject's head.
Each session started with a 30 second rest followed by a stimulation
block of 39 s during which subjects were asked to serially subtract a
2-digit number from a 3-digit number (e.g., 146–84) and this block was
followed by a 60 s of rest. This cycle was repeated 4 times. The arith-
metic operations were displayed centrally in white color against a
black background on a screen over the subjects' head. To avoid head
movements, subjects were instructed to perform all tasks mentally,
without vocalization or any movement of body.

fMRI data acquisition

A Philips 1.5 T MR system (Philips Systems, Best, The Netherlands)
was used to acquire T1 weighted images using a gradient echo planar
imaging (EPI) sequence with repetition time (TR) = 3000 ms, echo
time (TE)=50ms, flip angle=90°, matrix size=64×64, 30 axial slices
and voxel size=3.59mm×3.59mm×2mm. Structural scans were also
taken from each subject using a T1 weighted magnetization-prepared
rapid acquisition gradient echo (MPRAGE) sequence (0.9 mm ×
0.9mm×1.2mmresolution) to perform segmentation and coregistration.
A time series of 142 scans were collected for each subject.

fMRI data processingwas performed as follows: preprocessing steps
consisting of motion and slice timing correction and temporal filtering
with linear trend removal were performed on functional scans
using SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/, Wellcome
Department of Imaging Neuroscience, UCL). The anatomical image
was segmented into 5 tissue layers (gray matter, white matter, CSF,
skull and scalp) and the segmented layers were unified to form a new
anatomical image onto which the functional image is coregistered
(Fig. 3).

The fNIRS probe (ARGES Cerebro, Hemosoft Inc., Turkey), for which
we run photon migration simulations, contains 4 dual wavelength LED
light sources and 10 photo-detectors arranged in a rectangular geometry.
The sources and detectors are equidistantly placed on the probe with a
nearest source-detector separation of 2.5 cm. Only SD pairs with
minimum distance were considered resulting in 16 channels. During
fMRI measurements, we placed a sponge-like probe housing on each
subject's forehead with all the LEDs and detectors removed and their
positions replaced with vitamin E gel capsules to mark source and
detector locations on the MRI images (See Fig. 1).

Monte Carlo simulations of light transport in extra-cerebral and brain tissue

The forward matrix A (Eq. (4)) is a linear operator that projects
absorption changes occurring at each volume element, to the measured
optical signal between each SD pair. In our study, the A matrix is derived
for each subject and channel and is used to estimate the contribution of
hemodynamic changes occurring at each voxel to the total signal change
observed at each particular SD pair. This forward model was formerly
used to translate the hemodynamic changes observed within the fMRI
space to the hemodynamic changes observed in the opticalmeasurement
space in a study by Huppert et al. (2006).

We performedMonte Carlo simulations of light transport on subject-
specific tissue segmented anatomical MR images with optical properties
taken from Strangman et al. (2003). The absorption (μa) and scattering
coefficients (μs) at 760 nm were taken as 0.0177/0.73 (scalp), 0.0125/
0.93 (skull), 0.0021/0.01 (CSF), 0.0195/1.18 (GM), and 0.0195/1.18mm
(WM). Anisotropy factor (0.9) and refract index (1.4) were assumed
to be the same in all segmented tissues. The simulations were run by
the program named Monte Carlo eXtreme (Fang and Boas, 2009),
provided to the public by the Photon Migration Imaging Laboratory at
Massachusetts General Hospital (http://mcx.sourceforge.net/cgi-bin/
index.cgi).

To characterize absorption and scattering processes on realistic head
models, source anddetector positionswere determinedby identifying the
location of vitamin E fiducial markers that were placed on the emptied
spots of the fNIRS probe prior to the MPRAGE scans. After registering
the locations of sources and detectors, Monte Carlo simulations of light
transport were applied to the segmented anatomical head models
generated for each subject and SD pair as described in Boas et al.
(2002). The optical properties of white matter were set to those of gray
matter due to the fact that changes in white matter properties have a
negligible effect on the results (Boas and Dale, 2005). For each source
and detector position, the trajectories of 108 photons were simulated at
760-nm in order to predict the spatial distribution of light traveling
from a source position to a detector position. The spatial sensitivity
matrices were calculated only for the closest SD pairs. Fig. 2 illustrates
the spatial sensitivity profile of photon migration from a light source to
a detector on an anatomical MRI image. The forward equation (Eq. (4))
sums voxel-wise changes in fMRI-BOLD signal over the volume using
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the weights of the sensitivity matrix A to predict the measurements
between each source-detector pair.
fMRI projection

The absolute BOLD signal intensity changes measured from each
voxel aremultiplied by the corresponding element of the optical forward
matrix (A) projected onto the functional space. This is established by
registering the forward matrices obtained within the high resolution
anatomical image space to the lower resolution functional image space.
Amaskwith an intensity of 1 for voxelswith an optical sensitivity greater
than the threshold (taken as 60 dB signal loss of the maximum sensi-
tivity) and zero elsewhere is formed for each SD pair. BOLD signals
from voxels within the intersection of this mask and scalp tissue are
scaled with the corresponding optical weight and their summation is
denoted as optically weighted scalp BOLD signal under that SD pair. The
same procedure with gray matter mask is followed to calculate the
optically weighted brain BOLD signal. Although we report results using
the Green's function at 760 nm, the results were nearly identical when
optical properties at 690 and 830nm were used.
Signal model

Most neuroimaging techniques employ a standard analysis of
functional brain activity signals with the assumption of a linear addition
of hemodynamic changes (for further discussion, see Friston, 2007).
BOLD signal from each SD pair contains the desired brain signal obscured
by physiological noise. We will refer to the spatially and optically
A

B

Fig. 1. (A) Location of fNIRS source and detectors on the constructed anatomical image.
(B) Probe design. The fNIRS probe (ARGES Cerebro, Hemosoft Inc., Turkey) for which we
run photon migration simulations contains 4 dual wavelength LED light sources and 10
photo-detectors arranged in a rectangular geometry. The source and detectors are
equidistantly placed on the probe with an SD distance of 2.5 cm. During fMRI measure-
ments, a sponge probe housingwas placed on each subject's forehead with all the sources
and detectors removed and their positions replaced with vitamin E gel capsules to mark
source and detector locations on the MRI images.
weighted BOLD signal for each SD pair as ‘Sum’ signal and model it as:

YSUM¼ YBRAINþYSUPERFICIAL:

We investigated the possibility that the brain signal can be further
decomposed into two components: one related with task induced
neural activation (‘neural signal’) and one reflecting the effects of global
systemic physiology (‘global signal’) occurring in the brain.Wemodeled
brain signal for each SD pair as YBRAIN=YNEURAL+YGLOBAL. Hence, the
physiological noise embedded in the Sum signal can be defined as

YNOISE¼ YSUPERFICIALþYGLOBAL:

Regressing the superficial and global components from the Sumsignal
for each SD pair should then, in principle, produce a more accurate
measure of the task induced neural activation: YSUM−YNOISE=YNEURAL
(Gregg et al., 2010). As an example, the contribution of superficial noise
regressor is removed by regression YR=YSUM−αYSUPERFICIAL where YR
is the residual signal after noise removal and α≡ (YSUM · YSUPERFICIAL) /
(YSUPERFICIAL · YSUPERFICIAL) is the scaling coefficient that minimizes the
root mean square of YR (Saager and Berger, 2008).

For each SD pair, an optically and spatially weighted sum of BOLD
absolute signal intensity changes taken from scalp voxels along the
photon migration path is used to construct a measure of hemodynamic
changes localized to the superficial tissue layers (YSUPERFICIAL) whereas an
optically and spatially weighted sum of BOLD absolute signal intensity
changes from brain voxels within the photon migration path is used
to construct a measure of hemodynamic changes occurring in the
brain (YBRAIN). We scale the optically weighted scalp BOLD signals
with a proportionality constant of 4/5 taking into consideration the
Fig. 2. Photon absorption sensitivity profile for an SD pair separated by 2.5 cm. For each
subject, first a 3D realistic head model is generated, and then Monte Carlo simulations of
light propagation are performed to obtain the spatial sensitivity profiles. The contour overlay
is shown in logarithmic scale and contours are presented for each order of magnitude. The
red star at the inset figure shows the location of this axial slice relative to the optical
probe. The optically weighted Sum signal is obtained by multiplying BOLD activation at
each voxel with the corresponding element of the sensitivity matrix A.



Fig. 3. Processing steps for functional and anatomical data. The anatomical images are coregistered and segmented into a five-layered model (skin, skull, CSF and gray and white matter).
This image is used to perform Monte Carlo simulations to determine the light propagation through the head. The sensitivity weights obtained for each voxel are then used to scale each
voxel's data and sum them for gray matter and scalp masks separately.
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fact that i) BOLD signals obtained from the scalp mainly arise from
intravascular signal changes, ii) they are affected in a more pronounced
manner by the venous blood volume change rather than HbR
concentration change and iii) at a magnetic field strength of 1.5T with
TE=50ms and assuming a venous oxygen saturation of 70%, the change
in venous blood volumewith activation is estimated to contributewith a
weight of ~4/5 to the total BOLD signal change observed in the scalp
tissue (the details are discussed in Physics and physiology of brain and
scalp fMRI signals and their relation to tissue absorbance measured
with fNIRS section). Prior to formation of the Sum signals, motion
parameters obtained from the preprocessing step are regressed out
from all scalp and brain signals for a fair test of the three regression
methods.

For each subject and SD pair, we simulated a ‘short distance detector’
placed close to the light sourcewith a SD distance of approximately 1cm.
The position of each ‘short distance detector’was arranged to maximize
theoverlap between the corresponding 2.5cmdistance SDmeasurement
and the simulated short distance channel measurement. We then
defined a region of interest (ROI) in the scalp tissue beneath the short
distance detector and the source for each simulated short distance
channel. The fMRI signals extracted from the voxels in each scalp ROI
were averaged and denoted as ‘superficial signals’. The average of all
simulated superficial signals for each subject was denoted as ‘global
signal’ and calculated as

G tð Þ ¼ 1
N

XN
n−1

Sn tð Þ ð5Þ

where G(t) is a column vector representing the global signal change,
Sn(t) represents the superficial scalp signal change for the nth SD pair
and N represents the total number of SD pairs for a subject (N=16).

We attempt to quantify whether regressing the global or superficial
signals alone is sufficient in retrieving the task induced neural signal. To
explore the extent to which the Sum signal can be explained by the
superficial signal, the Sum signalswere regressedwith the corresponding
superficial signals for each subject. We call this method of eliminating
superficial noise ‘superficial signal regression’ (SSR). In the second
method, we regressed out the global signal from every Sum signal and
called this method ‘global signal regression’ (GSR).

Last, we evaluate both SSR and GSR on Sum signals and name this
method ‘extended superficial signal regression’ (ESSR). The residual
time series vi can be obtained by;

YSUM tð Þ ¼ G tð ÞS tð Þ½ �βþ vi tð Þ ð6Þ
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where YSUM(t) is the Sum data for a particular SD pair, G(t) and S(t)
represent the global and superficial signals respectively, β is a vector
of regression coefficients and vi is the corresponding time series
recovered after the global and superficial systemic signals are removed.

Data analysis

The performance of each regression method is determined by i) the
Pearson correlation coefficient (R2) and ii) themean squared error (MSE)
between task-related neural signal (neural) and the retrieved signal after
each regression method. We also demonstrate the R2 and MSE metrics
between brain signal and the retrieved signals for comparison. The
average of Pearson R2 coefficients was calculated after applying the
Fisher's r-to-z transformation and the resulting average is then back
transformed (Devore, 1995). R2 coefficient shows how well the two
signals co-vary independent of scale. Because this metric is not an
indicator of how well the amplitude of the retrieved signal matches
that of the neural signal, we also interpreted the MSE metrics.

To compare the quality of the signals retrieved after each regres-
sion method, we evaluated the contrast-to-noise ratio (CNR) of the
retrieved hemodynamic response. Contrast is defined as the peak-
height of response (averaged over multiple stimulus presentations).
We characterized measurement noise through the standard deviation
in the pre-stimulus baseline. We judged each method's effectiveness
by its improvement in CNR with respect to original Sum signal. CNR
improvement is defined as

100 � 1−CNRAð Þ
CNRB

ð7Þ

where CNRB represents CNR for original Sum signal and CNRA is the CNR
of the signal after the listed regression method is applied.

In addition, the variation among four activation blocks ismeasured by
calculating coefficients of variation (CV), denoted as CV ¼ σ

μ where σ is
the standard deviation across blocks and μ is the mean of each activation
block.

We also investigated the effects of superficial noise and cerebral
systemic physiology on the Sum signal by generating topographic
maps of functional activation and analyzed their spatial patterns. The
channel-wise hemodynamic responses during peak activation (taken
as 14 s after stimulus onset) for each stimulus block are mapped onto
forehead probe at the midpoint between each SD pair. The inverse
distances calculated between each midpoint are used as weight factors
to interpolate the peak responses over forehead. An image map is
formed as shown in Fig. 5. We quantified the resemblance of each
method's map to the neural activation map by calculating the mean
square error between images as

MSEmethod ¼ 1
M

� 1
N

XM
i¼1

XN
j¼1

Ii; jneural−Ii; jmethod

� �2
ð8Þ

whereN is the number of activation blocks (4 in this case),M represents
the number of subjects, Ineural

i,j represents the peak activation map
obtained from neural signals for subject i, block j and Imethod

i,j represents
the peak activationmap obtained from listedmethod for subject i, block j.

Results

Fig. 4 presents time traces of the hemodynamic response to the
mental arithmetic task from a single representative SD pair before and
after optically weighting the scalp and brain signals (Figs. 4A and B
respectively). The optically weighted Sum signal for each SD pair is
assumed to be the fMRI correlate of the corresponding fNIRS signal
while the optically weighted brain and scalp signals represent the
stimulus related brain functional response and overlying superficial
scalp physiological fluctuations respectively. Notice how the scalp signal
is enhanced in terms of magnitude and how the brain signal is obscured
by it in the Sum signal after weighing BOLD data from voxels along the
photon migration path with the sensitivity matrix (Figs. 4C and D).

In Fig. 5, we examine the effect of applying GSR, SSR and ESSR on
retrieving the time traces of the evoked brain hemodynamic response.
A representative case of applying GSR, SSR and ESSR is shown in Fig. 5B.
The original Sum signal fails to show a canonical response (Fig. 5A) due
to superficial and cerebral systemic interferences. When only global
signal is removed (GSR), it is difficult to distinguish individual activation
epochs whereas application of SSR or ESSR results in a consistent
canonical hemodynamic response. Task-evoked activations are apparent
even before block averaging when either SSR or ESSR method is used
(Fig. 5B); however ESSR results in higher response amplitudes. Applying
SSR or ESSR decreases block-to-block variation while improving signal
quality (Fig. 5C) whereas with GSR only, it is difficult to observe task-
evoked activation even in the block-averaged data. Block averaged ESSR
data has improved statistical significancewithmore time points showing
a significant rise relative to baseline (Fig. 5C, asterisksmark sample points
with a statistically significant deviation from prestimulus baseline of 5 s,
p b 0.05 with a two-tailed t-test.). In this representative measurement,
GSR did not yield a significant improvement in the CNR or quality
of the hemodynamic response. SSR improved CNR by 60% whereas
ESSR resulted in a CNR improvement of 240%. These traces (Figs. 5B–
C) show the ability of ESSR to reduce noise and increase statistical
significance.

The above-mentioned results can be generalized to the group data
(N=240) demonstrating a consistent increase in CNR and decrease in
coefficient of variability (CV) as global and superficial signals are
removed consecutively (Fig. 6A). The CNR values obtained using the
ESSR method are significantly higher than those obtained using the
GSR and SSR methods (two tailed paired t-test, p b 0.05). Moreover,
the CNR values obtained for the original Sum signals are significantly
lower than the CNR values obtained using the SSR and ESSR methods
(two tailed paired t-test, p b 0.05). The CNR values obtained with the
GSR method do not demonstrate a statistically significant difference
from the CNR values obtained for the original Sum signals (two tailed
paired t-test, p b 0.05). Similarly, CV values obtained using the ESSR
method are significantly lower than those obtained with the GSR
and SSR methods. Moreover, the CV values obtained for the original
Sum signals are significantly higher than the CV values obtained
using the ESSR method (two tailed paired t-test, p b 0.05). However
no significance is observed between the CV values obtained using SSR
and GSR methods.

Comparing %CNR improvement of the three methods shows that
there are ameliorations in signal quality through the use of SSR or GSR
alone, with SSR showing about 53% improvement while GSR results in
an improvement of 24% among subjects showing positive improvement
(Fig. 6B). There is a synergistic effect of utilizing both methods with the
signal quality being highest after ESSR (60%). The %CNR improvements
obtained for the original SSR and ESSR applied signals are significantly
higher than the %CNR improvements obtained using the GSR method
(two tailed paired t-test, pb0.05).

Fig. 7 shows the summary of R2 (A) and MSE (B) statistics over all
subjects and measurements in a bar graph for each regression method.
Correlation of scalp, brain and neural signals with corresponding Sum
signals and the retrieved signals after each regression method is shown
in Fig. 7A. Without any of the regression methods applied, scalp and
Sum signals are highly correlated (R2 = 0.98, p b 0.05) due to high
sensitivity dominance of the scalp layer on the Sum signals. This finding
is in accordance with a previous study by Takashi et al. (2011) who also
showed a correlation of greater than 0.9 between near (5mm) and far
(30mm) distance optical measurements which allowed them to probe
skin, and a mixture of skin and brain measurements separately during
a verbalfluency task. After the global signal is removed,mean correlation
between Sum and scalp signals decreases to 0.68. This result indicates
that the recovered signals after GSR still contain a common effect with



Fig. 4.Temporal traces of brain and scalp BOLD signals for a single SDpair (A) before and (C) afterweightingwith the optical sensitivitymatrix. The scalp signal is highly correlatedwith the
Sum signal (R2=0.92)while the brain signal isweakly correlated (R2=0.35). (B, D) Block averaged time traces of panels A and C respectively. Note how the brain BOLD signal is obscured
in the Sum signal due to sensitivity preeminence of the scalp interference. Gray shaded regions indicate stimulus interval. The BOLD signal has arbitrary units.
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the superficial scalp signals and suggests that GSR is not sufficient for
removing the entire physiological noise in the Sum signal. However,
correlation between scalp signal and Sum signal decreases dramatically
after regressing out the superficial scalp signal (Fig. 7A), which shows
that the superficial signal regression method successfully extracts the
scalp interference from the Sum signal. For brain signals, the small but
significant decrease in R2 after global signal removal (0.29 to 0.25,
p b 0.05) may be due to the fact that we have achieved to cancel the
global effect in the Sum signals while it is still buried in the brain signals.
SSR applied Sum signals are highly correlated with the brain signals
(R2 = 0.98, p b 0.05) whereas the correlation is slightly smaller when
ESSR is applied (R2=0.96, p b 0.05). The small but significantly higher
R2 with SSR applied Sum signals may be due to the fact when only the
superficial noise is removed, the effect of cerebral systemic physiology
is still preserved in the remaining Sum signal which contributes to the
correlation with brain signal. Instead, when both global and superficial
noises are removed from the Sum signal (ESSR method), the brain
signals contain a systemic effect while the ESSR applied Sum signals do
not. This causes SSR applied Sum signals to have a higher correlation
with brain signals than the ESSR applied Sum signals (R2=0.98 versus
R2=0.96 respectively, pb0.05 two tailed paired t-test). As the correlation
between neural and Sum signals is analyzed, an increasing trend in R2 is
observed with application of GSR and SSR. Correlation between the
neural and Sum signals reaches a maximum when ESSR is applied
(R2=0.99, p b 0.05). This can be explained by the fact that when both
superficial and global signals are removed from the Sum signal, the
remaining signal better resembles the true task related neural activity,
which is obtained by regressing out cerebral systemic effects from the
brain signal.

The summary of MSE statistics over all subjects and measurements
shown in Fig. 7B prove that a significant improvement in signal quality
and resemblance to neural signal are obtained after ESSR. The same
MSE statistics is also shown for the brain signals for comparison. There
is a significant decrease in the MSE between the neural signal and the
Sum signal when SSR is applied and the MSE is lowest when ESSR is
performed.

Fig. 8 illustrates topographic images of a representative Sum signal
(A), its scalp and brain components (B–C) as well as the Sum signal
after GSR (D), SSR (E), ESSR (F) and the neural signal itself (G). Each
column shows peak activation map from 4 consecutive stimulus blocks,
for Sum (A), scalp (B), brain signals (C) and Sum signal after GSR (D),
Sum signal after SSR (E) and Sum signal after ESSR (F). The last column
(G) illustrates activation map for the neural signal. Block average and
image variance of the 4 stimulus blocks are illustrated below the block
images. The Sum image is greatly influenced by the fluctuations at the
scalp and shows inconsistent localization of the hemodynamic responses
from block to block. It is difficult to observe the localized brain activity in
the Sum signal due to high dominance of the superficial scalp layer
fluctuations (Fig. 8A, notice the variability among blocks 1–4) which
tends to broaden some areas of activation while obscures some of them
(compare second and third blocks of sum and brain images.) The brain
map shows similar activations for each stimulus block, however the



Fig. 5. Evaluation of the effect of GSR, SSR and ESSR on a representative Sum signal. Time traces of the Sum, global and superficial signals from 4 consecutive stimulus blocks (gray shaded
regions) are illustrated in panel A. (B) Regressing out superficial noise signal from Sum signal produces SSR data whereas regressing out global noise signal produces GSR data. Regressing
out both superficial and global signals produces ESSR data. (C) Block averaged time traces of panel B. The shape of activation becomes cleaner with SSR and ESSRwhile applying GSR only
does not produce a pronounced effect (B, C). Error barsmark standard deviation and asterisks show statistically significant deviation frombaseline (C). Variation among 4 blocks decreases
while CNR is enhanced after applying ESSR. Note the reduced standard deviation and improved number of sample points showing statistically significant rise after ESSR method when
compared to SSR and GSR methods.
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neural map presents a more localized pattern of activation (compare
blocks 1–4of Figs. 8C andE). The ESSR images resemble the neural images
most with the lowestmean square error. Themean square error (Eq. (8))
for Sum, GSR, SSR and ESSR images are 0.55, 0.43, 0.025 and 0.008
respectively.
Fig. 6. (A) Grand average of the CNR and CV obtained for Sum data and after GSR, SSR and ESSR
standard deviation across all measurements (N=240). Statistically significant differences from
Discussion

The major goal of our study is to compare the efficacy of removing
physiological artifacts by performing i) a global signal regression (GSR),
ii) a superficial signal regression (SSR) and iii) an extended superficial
are applied. (B) %CNR improvement observed relative to Sum signal. The error bars show
the Sum Data are marked with an asterisk (2 tailed paired t-test, p b 0.05).
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Fig. 7. (A) Correlation of scalp, brain and task induced neural activity related brain signal (neural) with Sum signal before performing any regression (Sum), after performing GSR, SSR and
ESSR averaged for all subjects and measurements. Two tailed paired t-tests are performed between the R2 computed for original Sum signals and the retrieved time series after each
regressionmethod. Statistical significance at pb0.05 level are indicated by horizontal lines over the corresponding bars. (B)Mean Squared Errors (MSE) between the Sum signal and listed
signals (neural and brain) before performing any regression on Sum signal, after performing GSR, SSR and ESSR. Two tailed paired t-tests are performed between the MSE computed for
original Sum signal and the retrieved time series after each regressionmethod. Statistical significance at pb0.05 level are indicated by horizontal lines over the corresponding bars. The bars
represent the means of 240 measurements and the error bars represent standard error of the mean.
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signal regression (ESSR) where both a simulated superficial scalp
measurement and a global signal are regressed out from each SD pair
BOLD signal. A second, yet more physiologically relevant and innovative
goal is to prove that ESSR produces signals with a higher resemblance
to the true task related neural activity.

We determined the relative efficacy and performance of systemic
interference removal methods with a spatially weighted BOLD signal.
This procedure has some advantages over simulated data and data
collected in fNIRS settings. For simulated data, there is a high chance
that the quality of conclusions depends on the compatibility of the
model being used. The performance of most algorithms have some
uncertainty as the exploitedmathematical methods work with assump-
tions made on signal dynamics or underlying physiological mechanisms
(Sweeney et al., 2012). In an fNIRS setting, there is no access to an intact
and uncorrupted brain signal because the brain signals are intermixed
with the superficial physiological signals from the scalp. Unlike fNIRS,
fMRI has the advantage of probing the brain tissue independent of the
overlying scalp and skull layers. Signal from brain voxels is not mixed
with superficial contamination but still is subject to cerebral systemic
fluctuations interfering the brain's functional response. Superficial
scalp BOLD signals collected from the overlap of the scalp mask with
the photon sensitivity map contain physiological information from
entire scalp tissue along the photon path. Hence, we investigated the
effect of superficial contamination in a true setting inwhichwe included
physiological information from both where light is introduced and
collected.

The fMRI-derived brain signals consist of a task induced neural
activation intermixed with the effects of cerebral systemic fluctuations.
We assumed that this neural activation signal is the “ground truth” for
the desired task induced hemodynamic activity signal to be retrieved
and quantify the performance and quality of each regression method
by how well the retrieved signal resembles this ground truth neural
signal. In the following, we will first briefly discuss the validity of our
signal model and assess the improvements in signal quality and
reproducibility of the results for the three methods. We will then
provide some discussion about the physics and physiology of fMRI
signals from the scalp and brain and the extent to which they can be
used to quantify the fNIRS measurements obtained from both tissues.

Signal model

Two types of physiological fluctuations might interfere with the
neuronal activation patterns embedded in fNIRS recordings: spontaneous
oscillations that are not necessarily task correlated and that can be
systemic and brain driven; and systemic changes such as blood
pressure increases that are phase locked to the task-evoked
experiment. The well-known systemic physiological interference is
caused by cardiac beat around 1 Hz, respiratory oscillations around
0.4Hz and low frequency oscillations (LFOs). The suppression of cardiac
pulsations and respiratory oscillations is relatively easy because the
correlation between the interference and the functional response of
brain functional activity is usually low. LFOs in cerebral hemodynamics
occur in the range of 0.01–0.1 Hz and arise from two main sources:
spontaneous changes in local vascular tone referred to as vasomotion
and the global oscillations in arterial blood pressure known as Mayer
waves (Julien, 2006) affecting both the scalp and brain signals. In
addition to spontaneous oscillations, some types of stimuli may cause
a systemic response (i.e. an alteration in cardiac rate, blood pressure
or respiration frequency) which can result in a change in baseline
scalp or cerebral blood flow that correlates with the stimulus period.
Such task-related systemic changes that are locked and dependent to
the type of activation have been extensively investigated by previous
studies (Kirilina et al., 2012; Minati et al., 2011; Scholkmann et al.,
2013; Tachtsidis et al., 2009; Takahashi et al., 2011). One option for
uncoupling these systemic changes and the task-induced neural
activation is acquiring multi-distance fNIRS measurements assuming
that the short distance measurements predominantly reflect scalp
hemodynamics. The short distance measurement can then be removed
from the long distance measurement, as performed in our simulations
with the assumption that a similar superficial contribution is affecting
both measurements (Gregg et al., 2010; Saager and Berger, 2008; Zeff
et al., 2007). Superficial signal regression methods have been reported
to attenuate both global physiological and task evoked extracerebral
hemodynamic changes in optical data (Gregg et al., 2010; Zeff et al.,
2007). In the ESSR method, we accounted for systemic and task-
evoked interferences separatelywith a global and a local scalp regressor
and achieved an enhanced signal quality with higher CNR and better
resemblance to the neural activity related component of the Sum signal
when compared to the other two regressionmethods. The ESSRmethod
also successfully reduced the inter-trial variability in the Sum signal
which most probably stems from the underlying spontaneous activity
as suggested by Fox and Raiche (2007).

The physiological interference in fNIRS recordings can arise from
the superficial scalp and skull tissue as well as the cerebral systemic
oscillations in the brain tissue. Such physiological interference has been
considered as a ‘global phenomenon’ previously (Gagnon et al., 2012;
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A) Sum B) Scalp C) Brain D) GSR E) SSR F) ESSR G) Neural

Fig. 8. (A) Evaluation of the effect of applying GSR, SSR and ESSR on image variance. Each column shows peak activation from 4 consecutive blocks for (A) Sum, (B) scalp, (C) brain signals
and (D) Sum signals after GSR, (E) Sumdata after GSR and (F) Sumdata after ESSR. The last column (G) illustrates activationmap for the neural signal. Block average and image variance of
the 4 stimulus blocks are illustrated belowblock images. Note how theblock activations look similar after performing ESSR. Image variance is displayed as the standard deviation of each SD
pair at peak activation across all blocks. Image variance plot captures very little inconsistency in ESSR data.

499S.B. Erdoğan et al. / NeuroImage 87 (2014) 490–504
Gregg et al., 2010; Saager and Berger, 2005; Saager et al., 2011;
Umeyama and Yamada, 2009b; Zhang et al., 2007a,b). In contrast, we
considered that the cerebral systemic oscillations have a global
influence whereas the interference coming from superficial layers has
a more pronounced localized effect on the fNIRS signals. Systemic
oscillations affecting the brain are also present in the scalp tissue.
Indeed, using long distance fNIRS measurements, Cooper et al. (2011)
showed that low-frequency oscillations present in the fNIRS data
correlatedwellwith a large proportion of BOLD-fMRI voxels throughout
the cortex. They suggested that the majority of low frequency contri-
bution to the fNIRS signals occurs in the superficial layers of the head
and future studies exploiting the use of superficial measurements, as
regressors will be more convenient for eliminating low frequency
noise in the BOLD data. Frederick et al. (2012) also showed that the
short distance fNIRS signals provided better noise removal from the
BOLDdatawhen compared to long distance fNIRS signals. In accordance
with these studies, we considered the simulated global and superficial
scalp signals to be a good representation of the systemic interference
common to both brain and scalp tissue as well as the more localized
and dominant superficial physiological noise in the Sum signals.

The cerebral systemic interference present in our measurements is
modeled by averaging the scalp signals from all the simulated short SD
pair locations in the forehead. We assume the brain and scalp systemic
variations to be correlated due to their close physiological and vascular
connections as the heart, blood vessels, and lungs are the sources of the
global pressure-induced oscillations, and the carotid artery is the
common gateway for both scalp and brain hemodynamic oscillations
(Zhang et al., 2007a). Also it is known that diploic and emissary veins
can enable blood exchange between the extra- and intracranial
compartments of the forehead through the skull (Zenker and Kubik,
1996). Therefore, we thought it is reasonable to take an average of all
simulated scalp signals as a representative of global systemic physiology
for each subject, which would attenuate variations common to all
superficially sensitive channels and result in an enhanced waveform
resembling the global interference in the brain. Similar approaches that
used an average scalp regressor for removing global interference in the
optical measurements were proposed previously in literature as well
(Gregg et al., 2010; Mesquita et al., 2010).

Resemblance of the retrieved signals to the task related neural signal

Although the superficial scalp layer hemodynamic variations com-
prise a much larger portion of the total physiological interference due
to sensitivity dominance of the scalp (Al-Rawi et al., 2001; Liebert
et al., 2004), it is also necessary to account for the systemic physiological
variations inherent in the brain when one attempts to retrieve the true
neural activation in response to a task. A previous study by Huppert
et al. (2006) noted the presence of a correlated temporal noise in
concurrent fNIRS and cortical fMRI recordings and suggested that this
noise did not originate from superficial scalp layer because their fMRI
signals were obtained only from cortical tissues. Such physiological
fluctuations have been noted in other fMRI and optical imaging studies
as well (Bhattacharyya and Lowe, 2004; Toronov et al., 2000; Wise
et al., 2004). We therefore modeled the effect of cerebral systemic
interference in the brain signals with an average scalp regressor (details
are discussed in the Signal model section) and examined the effect of
applying GSR, SSR and ESSR on retrieving the time traces of the hemo-
dynamic changes associated with this ‘ground truth’ signal resembling
the desired neural activation (denoted as ‘neural signal’).

First, we tested whether regressing an average scalp regressor
(similar to the work of Gregg et al., 2010) would successfully extract
all of the systemic effect present in both layers and named this
procedure a ‘global signal regression’ (GSR). From the changes in
correlation between the scalp and Sum signal after GSR (Fig. 7A), we
can conclude that GSR cannot filter all of the superficial contamination
present in the Sum signal as the GSR applied Sum signals are still highly
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correlated with scalp signals (R2 = 0.68, p b 0.05). Moreover, the
contrast to noise ratio is not enhanced significantly after GSR, and it is
difficult to observe a canonical response in most of the measurements.
Next, we tested the efficacy of removing the local superficial scalp signal
from eachmeasurement.We observed a substantial improvement in the
signal quality as reflected in the CNR, R2 and MSE metrics. When the
superficial scalp signal is removed, the variation among blocks decreases
(notice the decrease in CV in Fig. 6A and the error bars in Fig. 5C) to a
better extent and it is easy to detect the canonical response at stimulus
intervals for most of the measurements (an example is shown in
Fig. 5B) even before block averaging.

By comparing the effects produced by GSR and SSR alone, we
conclude that superficial scalp signal contribution to fNIRS signals varies
significantly among different regions in the forehead and a local
measurement is necessary for canceling the effects of superficial signal
contamination adequately. A single global regressor did not contain
the exact superficial noise information constrained to the overlying
structures for each SD pair and was not able to recover the desired
neural response accurately (note theMSE and R2 statistics). This finding
is in accordance with two recent studies which showed that the
systemic interference in fNIRS measurements is not homogeneously
distributed across the surface of the scalp (Gagnon et al., 2012) and
the superficial task-evoked artifacts are more localized in the scalp
draining veins (Kirilina et al., 2012). For the neural signals, a small
increase in R2 is accompanied by a small decrease in MSE with GSR
applied Sum signals (Figs. 7A and B). Instead, there is a sharp
increase in R2 and a sharp decrease in MSE for SSR applied Sum
signals. These results also demonstrate that superficial layer interfer-
ence is the major component of the total systemic interference that is
in accordance with the simulation and human subject findings by
Zhang et al. (2007a,b).

In our study, we hypothesized that the cerebral systemic oscillations
have a global effect whereas the superficial oscillations have a spatially
heterogeneous effect. We accounted for both types of noise separately
in the ESSR method and compared the retrieved signal with the neural
signal that is considered to represent the ‘ground truth’ brain activation
free from cerebral systemic oscillations. The correlation between neural
and ESSR applied Sum signals is the highest while the MSE is the
smallest when compared to the other two methods. The signal quality
is enhanced most when ESSR method is applied with decreased
variation among stimulus blocks, a clear canonical waveform, highest
CNR improvement and a better resemblance to the ground truth neural
activation signal. Application of ESSR method improves signal quality,
reduces inter-trial variability by effectively canceling superficial scalp
contamination as well as systemic interference inherent in the brain
effectively. These improvements compared to GSR and SSR methods
also suggest that our assumption of characterizing cerebral systemic
physiology with the average of all scalp regressors is suitable for
discarding the systemic components of the brain signal. The CNR and
MSE metrics illustrate that we were able to recover the neural signal
to a good extent. These results also show that ESSR method can reduce
both spontaneous oscillations inherent in the brain and task-evoked
extracranial effects during the mental arithmetic task.

Improvements in activity localization

We also investigated the effects of superficial noise and cerebral
systemic physiology on the Sum signal by generating topographic
maps of functional activation and their spatial patterns. We assessed
the improvements in activation localization with the application of
the above-mentioned regression methods. The Sum image is greatly
influenced by the fluctuations at the scalp and shows inconsistent
responses from block to block due to high dominance of the
superficial scalp layer fluctuations (Fig. 5A, notice the variability
among blocks 1–4). The effects of global and superficial systemic
interference tend to blur the areas of activation (Fig. 8A). Such
superficial scalp effects have been shown to worsen the signal-to-
noise ratio, or be incorrectly interpreted as cerebral hemodynamic
changes, resulting in false positives in fNIRS experiments previously as
well (Kirilina et al., 2012; Minati et al., 2011; Tachtsidis et al., 2009;
Takahashi et al., 2011).

The brain map shows similar activation patterns for each block.
However, the neuralmappresents amore localized pattern of activation
(compare blocks 1–4 of Figs. 8C and E). This improvement in localiza-
tion of activity is most probably due to the cancelation of the global
noise buried in the brain. Applying ESSR method reduces the effect of
both the superficial scalp fluctuations and cerebral systemic physiology
and gives rise to maps that very well resemble the neural maps.
Although all activation maps appear similar after block-averaging
(fifth row of Fig. 8), the greater noise in the Sum and scalp signals can
be easily reflected in an image of variance map over multiple trials
(sixth row of Fig. 8).

Comparison with other methods

In our study, we have implemented a computationally simple
regression procedure for removing the effects of global and superficial
interference during a cognitive task. Ourwork provides complementary
information to previous fNIRS studies, which tested the efficacy of
adaptive filtering and linear regression of scalp measurements during
visual activation (Gregg et al., 2010; Saager et al., 2011; Zhang et al.,
2009). Although adaptive filtering is a more powerful method than
linear regression, Zhang et al. (2009) observed a mean improvement
of 60% for 71% of their HbO2 measurements and no CNR improvements
were observed for HbR. Similarly, Saager et al. (2011) reported that 75%
of the channels showed a CNR improvement while Gregg et al. (2010)
observed an improvement of about 200% in CNR across all hemoglobin
species in more than 80% of their subjects with linear regression. In
our study, we observed a positive improvement in CNR for 62% of
our measurements with a mean improvement of 60% with ESSR.
The amplitude of the cerebral hemodynamic response in the
prefrontal cortex during a cognitive stimulation may be smaller
when compared to hemodynamic responses obtained from primary
sensory or motor cortex during activation (Kirilina et al., 2012). For
this reason, the CNR improvement obtained in our study may be
smaller when compared to the CNR improvements observed during
motor or visual stimulation in previous studies. Stimulus correlated
systemic changes (e.g., increase in cardiac rate, arterial blood pressure,
respiration frequency), can induce a false positive effect on CNR and
regressing it out may result in an impairment of the CNR. Potential
reasons behind the lower CNR improvement should be investigated in
detail. Comparable performance of the ESSR method suggests that
effective filtering can be obtained with simple, easily implemented
algorithms.

The acceptance of fNIRS in clinical applications requires the delivery
of reliable and robust signals from a greater percentage of subjects
included in the studies. By canceling the effects of global and superficial
systemic physiology, shorter studies with increased signal quality can
be conducted on a greater number of subjectswhile the effects of fatigue
and adaptation are minimized.

Physics and physiology of brain and scalp fMRI signals and their relation to
tissue absorbance measured with fNIRS

Although our study relies on the similarity between fMRI and fNIRS
signal changes observed during cognitive stimulation, there are several
points to be considered when signals from the scalp and from the brain
are compared for both modalities. fMRI signals from the brain have
been shown to be sensitive to similar underlying hemodynamic
changes with fNIRS signals (Toronov et al., 2000, 2003). However,
regarding fMRI signals from the scalp, neither the biophysical origin
nor how they can be related to scalp optical signals have been well-



501S.B. Erdoğan et al. / NeuroImage 87 (2014) 490–504
investigated. In the following, we will discuss the physics and
physiology of fMRI signals from the scalp and brain and how they can
be related to temporal evolution of tissue oxygenation changesmeasured
with fNIRS.

The most established theories of fMRI attribute the physiological
origin of the BOLD signal to changes in local HbR content and blood
volume (Boxerman et al., 1995; Buxton et al., 1998; Ogawa et al.,
1993). The amplitude S of a single voxel MRI signal obtained with a
gradient echo sequence with echo time TE can be related to tissue
water content Mv and relaxation time (T2⁎) as

S∼Mv � exp − TE
T�
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There exist some fundamental differences when the theoretical
frameworks used for interpreting brain and scalp fMRI signals are
considered. The BOLD effect in the brain mainly arises from changes in
local [HbR] which is reflected in venous blood relaxation time (T2⁎). In
contrast, the scalp fMRI signals are thought to be primarily determined
by venous blood volume Mv in a voxel. At 1.5T field strength, while the
extravascular contribution to the brain fMRI signals is responsible for
half of the signal change (Buxton, 2002), the extravascular contribution
to the scalp fMRI signals can be neglected due to low signal intensity.
The tissue relaxation time (T2⁎) for skin is substantially shorter
(~12 ms for the dermis) (Song et al., 1997; Weiss et al., 2001) than
(T2⁎) of isolated blood (N80 ms) (Chien et al., 1994; Li et al., 1998;
Silvennoinen et al., 2003). The intrinsically low scalp tissue signal is
attributed to the short relaxation time of the skin layers (Richard
et al., 1991; Song et al., 1997) and low effective proton density (Barral
et al., 2010;Weiss et al., 2001) which can be regarded as a consequence
of the fact that a significant portion of water molecules in the dermis
is bound to collagen and not free (Richard et al., 1993). Therefore,
task-related changes observed in the scalp fMRI signal reflect intravas-
cular changes which may originate from a change in venous blood
oxygenation and the related change in blood relaxation time T2 or a
change in venous water volume Mv or a combination of both (Kirilina
et al., 2012). At a magnetic field strength of 1.5 T with TE=50ms and
assuming a venous oxygen saturation of 70%, the relative contribution
of these biophysical mechanisms to the fractional BOLD signal change
induced by activation can be estimated with the integrated model
proposed by Uludag et al. (2009) as
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where S is the venous MRI signal, ∑HbO and ∑HbR represent the
baseline amounts of HbO and HbR, respectively, and ΔS, Δ∑HbO and
Δ∑HbR represent the task-related changes of each quantitywith respect
to baseline. The reader is referred to Appendix 2 of Kirilina et al. (2012)
andUludag et al. (2009) for the derivation of Eqs. (9) and (10) and details
of the underlying assumptions. Eq. (10) shows that for a single voxel
scalp fMRI signal, changes in HbO content contribute with a weighting
factor of 1.26, while changes in HbR content contribute with a weighting
factor that is three times smaller. Kirilina et al. (2012) showed that, the
scalp fMRI signals obtained during different cognitive tasks were highly
correlatedwith scalpHbO concentration changeswhereas they exhibited
no significant correlation with HbR. Similarly, with simultaneous
fNIRS and laser Doppler flowmetry recordings, Takahashi et al. (2011)
demonstrated that blood flow and volume increased in the forehead
scalp during performance of a verbal fluency task. However, no signif-
icant change in scalp HbR concentration was observed. The relative
concentration changes of HbO and HbR measured by fNIRS correspond
to the total change of Δ∑HbO and Δ∑HbR in the cutaneous veins
which influence the fMRI signal according to Eq. (10). The fNIRS results
obtained by the above-mentioned two former studies let us assume that
for the scalp compartment Δ≈∑HbR≈ 0. Thus, the second term in
Eq. (10) can be neglected and the venous volume change is reduced to

Δ∑HbO
Δ∑HbOþΔ∑HbR

. To sum up, we infer that i) the scalp fMRI signal is

directly proportional to venous volume change and ii) venous volume
change is reflected in the scalp fMRI signal with a scaling factor of
1.26. For example, a 5% increase in scalp fMRI signal corresponds to a
venous blood volume increase of about 4%.

Quantification of fNIRS signals with a spatially weighted fMRI signal

The fMRI-BOLD signal change originates primarily from the local
concentration change of paramagnetic HbR molecules which results in
an alteration of themagnetic susceptibility of blood and createsmagnetic
field inhomogeneities. Therefore, one would expect a correspondence
between fNIRS-HbR and fMRI-BOLD signals. Numerous studies have
been performed to explore correlations between fMRI and fNIRS signals
both spatially and temporally (Huppert et al., 2005, 2006; Sassaroli
et al., 2006; Strangman et al., 2002; Toronov et al., 2001, 2007). Although
most theoretical approaches suggest a strong correlation between HbR
and BOLD, experimental validation is a controversial issue. Some studies
reported a better temporal correspondence between HbO and BOLD
signals (Hoshi et al., 2001; Strangman et al., 2002), while other studies
have shown a better correspondence between HbR and BOLD signals
(MacIntosh et al., 2003; Siegel et al., 2003; Toronov et al., 2001). This
discrepancy in literature may be related to the differential sensitivity of
BOLD signal to vascular compartments in the presence of stronger or
weaker static magnetic field (Boas et al., 2004; Cui et al., 2011).
Nonetheless, a synthesis of the results from these studies indicates that,
there is a strong correspondence between signals measured with fNIRS
and fMRI.

By using the approach of BOLD signal projection through the optical
sensitivity profile as performed in our study, the spatial and temporal
correlation between the fNIRS and fMRI measurements could be
examined with strong statistical temporal and spatial correlation in
previous studies (Huppert et al., 2005; Sassaroli et al., 2006; Toronov
et al., 2007). Huppert et al. (2005) indeed showed that the fNIRS-HbR
and BOLD activation patterns are qualitatively consistent with one
another after projecting the BOLD absolute image intensity signal
from each voxel coinciding the photon migration path through the
forward matrix that was found by the Monte Carlo simulations.
Moreover, partial volume effects were avoided and the discrepancy
in activation observed between fNIRS and fMRI recordings was
corrected. Similarly, Sassaroli et al. (2006) found that a weighted
average of the standard BOLD signal showed a strong spatial and
temporal correlation with both HbO and HbR concentration changes
measured with NIRS during a hand-tapping protocol. These studies
support the spatiotemporal correspondence hypothesized to exist
between the brain component of the spatially weighted Sum signal and
the fNIRS signals.

Relative changes of the fMRI signal contain at least two contributions:
one resulting from the tissue blood volume changes and the second
resulting from tissue oxygenation changes. The fMRI signal changes due
to the first mechanism are expected to be positively correlated with
sum of concentration changes of HbO and HbR as measured with fNIRS.
Taking into consideration i) the fact that task evoked superficial signal
changes in the forehead during cognitive tasks were observed for HbO
but not HbR (Kirilina et al., 2012; Takahashi et al., 2011), and ii) the
striking similarity observed between the time courses of scalp fMRI and
fNIRS HbO signals in a previous study (Kirilina et al., 2012), we suggest
that fMRI signal changes observed in the scalp for our study may better
represent the NIRS HbO or total hemoglobin (HbT) signal. Attributing
the scalp fMRI signal changes to blood volume change is in accordance
with the study of Drummond (1997) who reported an increase in
forehead scalp blood flow during mental arithmetic, and suggested that
the vasodilation is mediated by à-adrenoceptors. The scalp HbR content
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is expected to be less affected by the task since task performance should
not influence the metabolic demand of scalp. Consequently, we suggest
that task-related hemodynamic changes in the forehead scalp during
the mental arithmetic task may be due to the vasodilation mechanism.
Some previous NIRS studies demonstrated significant changes in HbO
signal from prefrontal cortex during mental arithmetic tasks. Hoshi and
Tamura (1993) observed pronounced changes in HbO signal but not
HbR during mental arithmetic in a 30-year-old male subject. Similarly,
in the work of Tanida et al. (2004), mental arithmetic task caused
increases in HbO and HbT concentration accompanied by a decrease
in HbR in the right and left prefrontal cortices of all subjects. These
results suggest that the brain component of the Sum signal might also
better correlate with HbO or HbT changes measured with fNIRS. We
therefore suggest that the spatially weighted Sum signal in our study
may show better correspondence to the HbO or HbT signals measured
with fNIRS.

Limitations of the study and recommendations for future work

One major limitation of our study is that we did not include any
fNIRS measurements in the present work. Our analysis relies on a
similarity between the time courses of fNIRS and fMRI signals instead
of a quantitative comparison of the two modalities. Although the
hemodynamic response measured with the two modalities might
differ in terms of amplitude, the time course of the measured scalp
hemodynamics has been shown to be very similar (Kirilina et al.,
2012). A quantitative analysis of concurrent fMRI and fNIRS scalp
measurements can help us elucidate the effect of task-related scalp
hemodynamics on long distance NIRS measurements and will be
our objective for future studies.

The systemic physiological parameters, especially the power of LFOs
measured during an fMRI session might differ compared to the same
parameters obtained in a sitting position during an fNIRS session
(Heinzel et al., 2013; Tachtsidis et al., 2004). In the sitting position, the
power of LFOs in both the scalp and brain tissue will be higher than
that during the supine position. However, the majority of the low-
frequency contribution to the fNIRS signal will still be from the
superficial tissue as discussed in previous studies (Cooper et al., 2011;
Tong and Frederick, 2010). Further studies on how posture affects the
performance of the ESSR method in an fNIRS setting are necessary
although we believe it is reasonable to assume that the superficial and
global regressors obtained from the scalp measurements will still serve
as a good modeling waveform for physiological noise during both
postures.

One of the advantages of the ESSRmethod is its ease of use with any
multi-distance fNIRS probe design, but this simplicity comes at the cost
of making assumptions. One limitation is that there are likely several
sources that contribute to themeasured noise and that amultiple linear
regression method combined with direct measurements of other
systemic signals such as cardiac beat, breathing rate, and arterial blood
pressure, may provide a better insight to understanding the effects of
superficial and global interferences. Previous published work with
1.5T field strength has shown that fMRI andNIRS are sensitive to similar
underlying hemodynamic changes (Toronov et al., 2000, 2003).
However, we should also note that fMRI signals obtained with 1.5 T
MRI systemsmainly reflect hemodynamic changes in venules and larger
veins but not capillaries (Seiyema et al., 2004). fMRI data collected at
higher magnetic field strengths (≥4 T) will improve the sensitivity to
capillaries and accuracy of proposed method.

The ESSR method is chosen for examination of task-evoked neural
activity during a cognitive task; care should be taken in choosing the
appropriate noise removal method for each experiment. As noted
earlier, alternative methods for modeling the systemic physiology based
interference in fNIRS recordings have been proposed in the literature.
Each method is based upon different assumptions about the systemic
noise present in fNIRS signals. While we tested only 3 methods for a
single type of cognitive stimulation, a detailed study testing which
interference cancelation method works best for which type of stimuli
will be a valuable future contribution.
Conclusion

In this study, we have shown that treating superficial interference
locally and cerebral interference globally with the ESSR method results
in amore accurate recovery of the task-induced hemodynamic response
with higher spatial localization and lower inter-trial variability when
compared to theGSR and SSRmethods. Using an average scalp regressor
together with a local measure of superficial hemodynamics (ESSR
method) better accounted for the systemic interference inherent in the
brain. Our fMRI results demonstrate that i) superficial scalp interference
is the major component of the total systemic interference and is not
homogeneously distributed among different regions on the forehead,
and ii) optical measurements of the brain hemodynamics are greatly
influenced by interference of superficial origin. We conclude that
maximizing the overlap between the optical path of the superficial
measurements and the longer distance measurements is of crucial
importance for accurate recovery of the evoked hemodynamic response
in fNIRS recordings. A short optode (probing local scalp hemodynamics)
placed close to each source and detector would be, in principle, ideal for
accurate recovery of the evoked hemodynamic response in fNIRS
recordings at the expense of impracticality. Future studies are needed
to design optimal multi-distance probe geometries that account for
superficial interference properly with the least number of short optode
measurements.
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